A fully optimized end-to-end solution for I/O multiplex immunofluorescence staining using Opal Polaris 7-Color PD1/PD-L1 Panel Kits for Lung Cancer and Melanoma

Yi Zheng, Rachel Schafer, Lining Liu, Glenn Milton, Carla Coltharp, Victoria Duckworth, Michael McClane, Peter Miller

1 Background
Understanding cellular heterogeneity and spatial relationships between biomarkers within the tumor microenvironment is a key component to translational research in immuno-oncology. A reproducible, quantitative, easy-to-use, and standardized multiplex fluorescent IHC assay is required for quantitative assessment of these relationships in situ for current I/O clinical trials and translational researches. In this study, we demonstrate a fully developed, yet flexible, end-to-end workflow solution for tissue biomarker discovery in lung cancer and melanoma. This newly developed Phenoptics® solution provides an integrated MOTiF™ workflow including optimized RTU reagents plus image analysis algorithms enabling a more comprehensive and specific tumor microenvironment analysis with minimal user tuning.

2 Methods
FFPE samples from human lung cancer and melanoma were stained using MOTiF PD1/PD-L1 Panel: Auto LuCa Kit and MOTiF PD1/PD-L1 Panel: Auto Melanoma Kit. Staining was performed on the Leica BOND RX™ automated stainer with the preloaded MOTiF protocol. Multispectral scans were acquired on Vectra Polaris® with pre-optimized acquisition parameters and analyzed with a pre-configured phenotyping algorithm in inForm®. Spatial analyses and visualizations were performed in R using pheonpr and pheonptr Reports [1].

3 MOTiF Panel Kit Workflow

4 Results
Pathologist-verified Antibody Performance

Fig. 1 Antibody-Opa pairs for MOTiF PD1/PD-L1 Panel: Auto LuCa Kit (a) and MOTiF PD1/PD-L1 Panel: Auto Melanoma Kit (b).

Fig. 2 Akoya new 7-color MOTiF PD1/PD-L1 Panel Kits along with whole slide multispectral imaging workflow provide the only validated end-to-end solution for unparalleled quantitative data for translational immuno-oncology research.

Fig. 3 Whole slide scan of MOTiF PD1/PD-L1 Panel assay on lung cancer (upper) and melanoma (lower) samples.

Rules-based Phenotyping Analysis

Fig. 4 Chromogenic and Fluorescence Concordance Matrix for MOTiF PD1/PD-L1 Panel Assay. Consecutive sections from lung cancer and melanoma are stained with the MOTiF PD1/PD-L1 Panel Kits or Leica BOND Polymer Refine Detection Kit. Representative Fields comparing DAB and Unmixed Monoplex view from the MOTiF PD1/PD-L1 Panel Assay from Lung Cancer (a) and Melanoma (b).

Fig. 5 Touching cell (left and middle) and nearest neighbor (right) plots from pheonptrReports for lung cancer (a) and melanoma (b). Each plot shows two phenotypes (CD8+ is blue, CD68+ is yellow, and tumors in pink). In touching cell plots, a cell outline is filled if it is touching a cell of the paired phenotype. In nearest neighbor plots, the nearest PanCK+ cell to each CD8+ cell is connected by a white line. (c) and (d) are summaries of cell phenotype counts for the fields in (a) and (b), respectively. Horizontal bars show counts of individual positivities. The vertical bars show counts of specific phenotype combinations present in the data. The central matrix shows the combinations graphically.

Reproducibility of MOTiF PD1/PD-L1 Panel Kits

Fig. 6 Top Quartile results from Phenotyping analysis on serial section slides from 3 different tissues stained with MOTiF PD1/PD-L1 Panel Kits. Phenotyping algorithm applied to all tissues and top 25% of positive cells reported. CV’s calculated by taking the mean and standard deviation of individual fields across five different slides (SDEV/Mean × 100). CV’s were then averaged between fields (lower table). A scoring threshold was used to determine PD-L1+ cells for analysis.

5 Conclusions
With new MOTiF PD1/PD-L1 Panel Kits, we have demonstrated an easy-to-use yet comprehensive end-to-end Phenoptics research workflow. We have radically simplified the Opal method and facilitated the development and optimization of translational multiplex fluorescent assays by providing pre-defined staining conditions while still giving researchers the flexibility to balance signals based on their tissue samples. Complementary pre-configured imaging protocol and analysis algorithm provide researchers faster access to quantitative data across study samples.